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Abstract Wheat is prone to strawbreaker foot rot (eye-
spot), a fungal disease caused by Oculimacula yallundae
and O. acuformis. The most eVective source of genetic
resistance is Pch1, a gene derived from Aegilops ventri-
cosa. The endopeptidase isozyme marker allele Ep-D1b,
linked to Pch1, has been shown to be more eVective for
tracking resistance than DNA-based markers developed to
date. Therefore, we sought to identify a candidate gene for
Ep-D1 as a basis for a DNA-based marker. Comparative
mapping suggested that the endopeptidase loci Ep-D1
(wheat), enp1 (maize), and Enp (rice) were orthologous.
Since the product of the maize endopeptidase locus enp1
has been shown to exhibit biochemical properties similar to
oligopeptidase B puriWed from E. coli, we reasoned that
Ep-D1 may also encode an oligopeptidase B. Consistent
with this hypothesis, a sequence-tagged-site (STS) marker,
Xorw1, derived from an oligopeptidase B-encoding wheat

expressed-sequence-tag (EST) showed complete linkage
with Ep-D1 and Pch1 in a population of 254 recombinant
inbred lines (RILs) derived from a cross between wheat
cultivars Coda and Brundage. Two other STS markers,
Xorw5 and Xorw6, and three microsatellite markers
(Xwmc14, Xbarc97, and Xcfd175) were also completely
linked to Pch1. On the other hand, Xwmc14, Xbarc97, and
Xcfd175 showed recombination in the W7984 £ Opata85
RIL population suggesting that recombination near Pch1 is
reduced in the Coda/Brundage population. In a panel of 44
wheat varieties with known eyespot reactions, Xorw1,
Xorw5, and Xorw6 were 100% accurate in predicting the
presence or absence of Pch1 whereas Xwmc14, Xbarc97,
and Xcfd175 were less eVective. Thus, linkage mapping and
a germplasm survey suggest that the STS markers identiWed
here should be useful for indirect selection of Pch1.

Introduction

Eyespot, a fungal disease of wheat (Triticum aestivum L.)
and other cereals (Wiese 1987), is caused by Oculimacula
yallundae (Wallwork & Spooner) Crous & W. Gams (syn:
Tapesia yallundae, Pseudocercosporella herpotrichoides
var. herpotrichoides) and O. acuformis (Boerema, R. Piet-
ers & Hamers) Crous & W. Gams (syn: Tapesia acuformis,
Pseudocercosporella herpotrichoides var. acuformis)
(Crous et al. 2003). Eye-shaped eliptical lesions on the
lower portion of the stem give name to the disease also
known as strawbreaker or footrot. Winter wheats grown in
areas of high rainfall and moderate winters such as north-
western Europe and the PaciWc Northwest (PNW) region of
the United States are particularly vulnerable to infection.
Severe infections can result in yield losses of up to 50%
(Fitt et al. 1988). Fungicidal controls can be used but

Communicated by F. Ordon.

J. M. Leonard · C. J. W. Watson · R. S. Zemetra · 
O. Riera-Lizarazu (&)
Department of Crop and Soil Science, 
Oregon State University, 107 Crop Science Bldg, 
Corvallis, OR 97331, USA
e-mail: oscar.riera@oregonstate.edu

A. H. Carter · J. L. Hansen
Department of Plant, Soil, and Entomological Sciences, 
University of Idaho, Moscow, ID 83843, USA

D. K. Santra
Department of Crop and Soil Sciences, 
Washington State University, Pullman, WA 99164, USA

K. G. Campbell
US Department of Agriculture, Agricultural Research Service, 
Washington State University, Pullman, WA 99164, USA
123



262 Theor Appl Genet (2008) 116:261–270
require additional inputs and present some environmental
concerns. In addition, the number of fungicide-resistant
strains of the pathogen recovered from Welds in the PNW
has been increasing over time limiting the usefulness of this
approach (Murray 1996). Thus, development of wheat cul-
tivars with genetic resistance has been recognized as the
most cost-eVective and environment-friendly strategy.

Three sources of genetic resistance (Pch1, Pch2, and
Pch3) are currently available for use in wheat. Pch1 was
introduced from Aegilops ventricosa Tausch into the hexa-
ploid wheat breeding line VPM-1 (Ae. ventricosa/T. persi-
cum//3*Marne) (Maia 1967; Doussinault et al. 1983) and
mapped to the long arm of chromosome 7D (Worland et al.
1988). Since the 1950s, the French variety Cappelle-Des-
prez has been used as a source of the seedling-stage resis-
tance provided by Pch2. This gene has been mapped to the
long arm of chromosome 7A (de la Peña et al. 1997). A
third potential source of resistance, PchDV (Pch3) that has
not been tested in commercial wheat cultivars, has been
identiWed and mapped to chromosome 4V of Dasypyrum
villosum (L.) Candargy (Yildirim et al. 1998). Of these
three genes, Pch1 has been the most widely used in devel-
opment of eyespot-resistant wheat cultivars.

Since bioassays or Weld screening for resistance can be
diYcult, there is both an interest and a need to identify a
facile marker for indirect selection. Close association
between Pch1 and a codominant endopeptidase marker
allele, Ep-D1b, was demonstrated by McMillin et al. (1986)
and subsequently used to monitor introgression of eyespot-
resistance (Pch1) from VPM-1 to elite lines. Improvements
in the endopeptidase assay have recently been published
and this assay was found to be completely accurate in pre-
dicting resistance (Santra et al. 2006). Since it is often diY-
cult to distinguish the Ep-D1b allele from certain
commonly occurring Ep-A1 and Ep-B1 homoeoalleles
(Koebner et al. 1988), a more speciWc DNA-based marker
would be desirable. Recently, an AFLP-derived microsatel-
lite marker XustSSR2001-7DL closely linked to the Ep-D1
locus has been reported (Groenewald et al. 2003). The
authors observed two recombinants among 98 segregating
progeny implying XustSSR2001-7DL lies approximately
2 cM distant from the Ep-D1 locus. Therefore, it was not
unexpected that Santra et al. (2006) found the microsatellite
marker to be only 90% accurate in predicting the phenotype
(presence or absence of Pch1) in 38 lines surveyed. Thus,
the development of a DNA-based marker to replace the Ep-
D1b isozyme assay has not been achieved.

The main objective of this study was to identify a wheat
EST candidate for Ep-D1 to be used as a basis for designing
a DNA-based marker tightly linked to Pch1. Observations
regarding both the biochemical properties and chromo-
somal locations of putative homoeologous endopeptidases
from wheat, rice (Oryza sativa L), and maize (Zea mays L)

suggested that Ep-D1 may encode a serine protease, oligo-
peptidase B. The report of a puriWed wheat oligopeptidase
B linked to a wheat EST provided a starting point for
marker development. Here, we present the identiWcation of
this candidate gene and two other DNA-based markers
more closely linked to Pch1 than XustSSR2001-7DL. We
also report an apparent reduction in recombination sur-
rounding Pch1 in the population used in this study.

Materials and methods

Plant materials

A collection of 44 wheat accessions (related by pedigree)
was used (Table 1). Twenty-two of these lines were eye-
spot-resistant and carried Pch1 whereas, 22 were eyespot-
susceptible and did not carry Pch1. This panel of genotypes
was used to test candidate markers for association with
Pch1. Markers that showed an association with Pch1 were
genetically mapped using a population of 254 F6-derived
recombinant inbred lines (RILs) from a cross between the
eyespot-resistant club wheat cultivar Coda (Allan et al.
2000) and the eyespot-susceptible common wheat cultivar
Brundage (Zemetra et al. 1998). Genetic mapping of some
microsatellite markers was also carried out using 94 RILs
of the International Triticeae Mapping Initiative (ITMI)
W7984 £ Opata85 population (Nelson et al. 1995).

DNA isolation, molecular markers, and mapping

DNA was extracted from approximately 50 mg of leaf tis-
sue using the protocol of Riera-Lizarazu et al. (2000).
Sequences for previously mapped microsatellites were
obtained from the GrainGenes website (http://wheat.pw.
usda.gov/GG2/index.shtml). BLAST searches were con-
ducted on databases at the National Center for Biotechnol-
ogy Information (NCBI) (http://www.ncbi.nlm.nih.gov/),
The J. Craig Venter Institute (http://www.tigr.org/), and the
Gene Index Project at the Dana-Farber Cancer Institute
(http://compbio.dfci.harvard.edu/tgi/). Primer sequences
for new STS markers and the DNA sequence accessions
used for their design are listed in Table 2. Polymerase chain
reactions (PCR) were carried out in 10-�l volumes com-
prising 0.3 U Taq polymerase with 1X PCR buVer contain-
ing 1.5 mM MgCl2 (Qiagen, Valencia, CA, USA), 2%
sucrose in 0.04% cresol red, 0.2 mM of each dNTP, and
0.5 �M of each primer. The PCR consisted of denaturation
at 94°C for 3 min, followed by 40 cycles of 94°C for 30 s,
50–60°C (depending on primers) for 30 s, and 72° for
1 min, with Wnal extension at 72°C for 5 min. Microsatel-
lite-speciWc primer pairs that produced PCR products with
size polymorphisms greater than 4 bp were resolved on 3%
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Table 1 Germplasm used for association mapping of Pch1-related markers

a Accession starting with CItr and PI were obtained from the US Department of Agriculture, National Small Grains Collection, Aberdeen, ID, USA
b Seed for the variety Rendezvous was obtained from Dr. Xianming Chen, US Department of Agriculture, Agricultural Research Service, Pullman,
WA, USA
c Seed for VPM-1/Moisson 421 and VPM-1/Moisson 951 were obtained from Dr. Robert E. Allan, US Department of Agriculture, Agricultural
Research Service, Pullman WA, USA

Line Accessiona Pedigree Pch1 present

Chukar PI 628641 WA 7665/Rulo Yes

Coda PI 594372 Tres//Madsen/Tres Yes

Finch PI 628640 Dusty//Wa7164/Dusty Yes

FR-50 PI 494183 VPM-1/McCall Yes

Hyak PI 511674 VPM-1/Moisson 421 //2*Tyee Yes

Madsen PI 511673 VPM-1/Moisson 951//2* Hill 81 Yes

Rendezvousb VPM-1/Hobbit//Virtue Yes

Roazon PI 422330 VPM-1/Moisson Yes

Rulo PI 578137 Tyee//Roazon/Tres Yes

Simon PI 636132 Haven/Lambert//Madsen’ Yes

Temple PI 599665 Tres/VPM-1 Yes

Tubbs PI 629114 Madsen/Malcolm Yes

VPM-1 PI 519303 Ae ventricosa/T. persicum/3*Marne Yes

VPM-1/Moisson 421c VPM-1/Moisson Yes

VPM-1/Moisson 951c VPM-1/Moisson Yes

WA 7217 PI 561035 VPM/Moisson-951//2*Barbee Yes

WA 7621 PI 566815 VPM/Moisson 421/2/VH 66354/WA 5827/WA 6241/3/Tres Yes

WA 7625 PI 561031 VPM-1/Moisson 951//2*Hill 81 Yes

WA 7666 PI 561030 VPM/Moisson 951//CI 13438 Yes

WA 7671 PI 566816 VPM-1/Moisson 421//VH-66354/WA 5827/WA 6241/3/2*Hill 81 Yes

WA 7690 PI 597665 VPM-1/Moisson 951//Yamhill / Hyslop/Hill 81/3/WA6910 Yes

Weatherford PI 602861 Malcolm/3/VPM/Moisson 951//Hill/4/VPM/Moisson 951//2*Hill Yes

Barbee CItr 17417 WA 3969//PI 178383/Vogel-1 No

Brundage PI 599193 Stephens/Geneva No

Capelle Desprez PI 262223 Vilmorin 27/Hybride du Joncquois No

Daws CItr 17419 WA 4877/VH 66336 No

Dusty PI 486429 Brevor/CI 15923//Nugaines No

Haven PI 592150 Hedgehog/Norman//Moulin No

Hill 81 CItr 17954 Yamhill/Hyslop No

Hobbit PI 428521 Professeur Marchal//Marne Desprez/VG-9144/3/TJB-16 No

Hyslop CItr 14564 Nord Desprez/2*Pullman101 No

Lambert PI 583372 Stephens/Sprague No

Malcolm PI 497672 Cappelle Desprez/Pullman 101//Bezostaya/3/Stephens No

Moisson PI 315998 Cappelle Desprez//Hybride 80–3/Etoile de Choisy No

Peck CItr 17298 Gaines/CI 17250 No

Pullman Selection 101 CItr 13438 Norin 10/Brevor//Orfed/Hybrid 50/3/Burt No

Stephens CItr 17596 Nord Desprez/Pullman Selection 101 No

Tres CItr 17917 Suwon 92 /6*Omar/3/Tr .Sp/Coastal//3*Omar No

Tyee CItr 17773 Vogel-1/CI 78051//CI 13447 /3/3*Omar No

Vilmorin 27 PI 125093 Dattel//Japhet/Parsel/3/Hatif Inversable/Bon Fermier No

Virtue PI 447429 Maris Huntsman/Maris Durin No

WA 5827 PI 518952 PI 178383/2*Burt//Omar/WA 1834 No

WA 7665 PI 561029 Tyee//Capelle Desprez/Tres No

Yamhill CItr 14563 Heines VII/Alba No
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agarose gels. Otherwise, one primer per pair was labeled
with a Xuorescent dye and fragment analysis was carried
out using an ABI Prism 3100 Genetic Analyzer. ABI Gene-
Scan, version 2.1, and Genotyper, version 2.0, software
(Applied Biosystems, Foster City, CA, USA) were used to
size fragments based on an internal lane standard. Maps
were constructed using Joinmap 3.0 (Van Ooijen and Voo-
rrips 2001) utilizing the Kosambi mapping function.

Endopeptidase assay

The allelic constitution at the Ep-D1 locus for Coda (Ep-
D1b), Brundage (Ep-D1a), and the Coda/Brundage RIL
population was determined using the endopeptidase assay
described by Santra et al. (2006). Wheat seeds 50% sub-
merged in tap water were grown 5–6 days at ambient tem-
peratures (20–25°C) with 16 h days under the light of a
standard 60 W tungsten electric bulb. Proteins extracted in
10 �L of ice-cold extraction buVer from »4 cm root sam-
ples were absorbed onto 4 £ 10 mm Whatman No.3 Wlter
paper strips and electrophoresed on an 18% starch gel
(Starch Art Corp., Smithville, TX, USA) for 3–3.5 h at 4°C
under a constant current of 40 mA. Gel slices were incu-
bated for 1-2 h in staining solution [25 ml 0.1 M Tris–
Maleate-NaOH, pH 6.4, containing 6.4 mg Black K Salt
and 2.8 mg N-�-Benzoyl-DL-Arginine �-Naphthylamide
(BANA)] at ambient temperature in the dark.

Disease screening

The allelic constitution with respect to the Pch1 locus in
Coda (Pch1 present), Brundage (Pch1 absent), and the
Coda/Brundage RIL population was determined using bio-
assays for strawbreaker foot rot resistance according to
Macer (1966) with some modiWcations. Four replicates of
Wve plants per RIL were grown in 73 well-trays (Growing
Systems Inc., Milwaukee, WI) along with the two parents,
Brundage and Coda, in a Conviron GR48 growth chamber
(Controlled Environments Limited, Winnipeg, MB, Can-

ada) set at a 16 h/24°C days and 15°C nights. Upon emer-
gence, a 3-cm plastic straw cylinder was placed over the
coleoptiles to hold inoculum and to improve uniformity of
contact with the stem base. After 2 weeks, a plate of
actively growing O. yallundae was blended in 250 mL ster-
ile water to produce an inoculum slurry. Plants were indi-
vidually inoculated with 500 �L of inoculum (»1 £ 105

conidia mL¡1). Two weeks after inoculation the photope-
riod was reduced to 12 h at 20°C. After another week, day
length was reduced to 10 h, and day/night temperature was
reduced to 4/4°C over a 5-day period then steadily main-
tained for 6 weeks.

The Wrst set of 94 RILs plus parents (Coda and Brun-
dage) were visually rated for disease severity on a scale of
0–2, where 0 = no lesion, 1 = lesions present on Wrst and
second leaf sheath, and 2 = large lesions on leaf sheaths and
stem or plant senescence. The distribution of disease scores
for these 94 RILs was bimodal (Fig. 1a) with some overlap
between groups. Thus, we used analysis of variance (com-
pletely randomized design with four replications) and
Fisher’s least signiWcant diVerence (LSD) to separate resis-
tant from susceptible genotypes. A susceptible line (Pch1
absent) was deWned as having a mean trait value that was at
least one LSD (0.5) lower than Brundage (1.78), the sus-
ceptible parent. A resistant line (Pch1 present) was deWned
as having a mean trait value that was up to one LSD greater
than Coda (0.70), the resistant parent. Using this classiWca-
tion, individuals with mean visual ratings ranging from 0 to
1.2 were considered resistant (Pch1 present) whereas plants
with mean ratings ranging from 1.28 to 2 were considered
susceptible (Pch1 absent). Two RILs had a mean disease
score between 1.2 and 1.28 and could not be classiWed.
These two RILs were retested in addition to the remaining
160 RILs of the population as well as the parental lines.
Because the 0–2 rating scale was narrow, all subsequent
screenings relied on disease severity ratings on a 0–4 scale,
where 0 = no lesion, 1 = a lesion under the Wrst leaf sheath,
2 = several lesions on the second leaf sheath, 3 = large
lesion around the tiller involving both the Wrst and second

Table 2 Target gene, primer sequence, approximate product size, and annealing temperatures for three Pch1-linked STS markers

a Genbank accession number, NCBI (http://www.ncbi.nlm.nih.gov/)
b AmpliWcation product fragment size produced from DNA from Pch1-carrying genotypes
c Tentative contig from the Wheat Gene Index; Gene Index Project, Dana-Farber Cancer Institute (http://compbio.dfci.harvard.edu/tgi/tgipage.html) 

Putative gene Primer Primer sequence Accession number Tm (°C) Product size (bp)b

Oligopeptidase B orw1F 5�-CTATTACATGAAATCTTATTCTCC-3� AB246917a 55 180

orw1R 5�-CAGCAGTAACGAGAATGTGG-3�

Callose synthase orw5F 5�-GCATCCTCGCCTTCATGC-3� TC252872c 56 Null

orw5R 5�-CGACCATCTCGACCACAGG-3�

PSII assembly factor Hcf136 orw6F 5�-AGGGCCGCAGATAACATCC-3� TC268469c 56 166

orw6R 5�-CACAAACCCTTGGTTGTCG-3�
123
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leaf sheath, 4 = prominent lesion visible on the tiller or
plant death. Disease scores had a bimodal distribution with
two distinct groups (Fig. 1b). Thus, individuals with mean
visual ratings ranging from 0 to 1.5 were considered resis-
tant (Pch1 present) whereas plants with mean ratings rang-
ing from 2.5 to 4 were considered susceptible (Pch1
absent).

Results

IdentiWcation of a candidate gene

A series of three orthologous wheat genes Ep-A1, Ep-B1,
and Ep-D1 encode enzymes that cleave the substrate N�-
Benzoyl-DL-Arginine-� Naphthylamide (BANA). These
enzymes are assumed to be endopeptidases as BANA does
not possess a free carboxyl or an amino terminus for exo-

peptidase activity. Ep-A1, Ep-B1, and Ep-D1 have been
localized to the long arms of wheat homeologous group
7 chromosomes (Hart and Langston 1977; Koebner et al.
1988). Furthermore, Ep-D1 has been mapped to the distal
end of the long arm of chromosome 7D (Gale et al. 1995).
Rice and maize also possess endopeptidase loci that cleave
the substrate BANA (Vodkin and Scandalios 1980; de
Kochko 1987; Cardy et al. 1982; Pham et al. 1989). Both
the maize endopeptidase locus, enp1 (Edwards et al. 1992),
and the rice endopeptidase locus Enp (Pham et al. 1989) are
located on chromosome 6 of their respective species, which
are homoeologous to the long arm of wheat 7D (Hossain
et al. 2004). These observations suggested that wheat,
maize, and rice endopeptidase loci might be orthologous.

Since the maize enp1 locus encodes an enzyme with sub-
strate speciWcities and inhibitor characteristics (Vodkin and
Scandalios 1980; Doi et al. 1986) similar to oligopeptidase
B puriWed from E. coli (Table 3), we hypothesized that the
wheat Ep-D1 locus might also encode an oligopeptidase B.
The existence of a wheat oligopeptidase B homologue has
been shown by Tsuji et al. (2004), who puriWed a serine
protease from developing wheat embryos with peptide
sequence homology to E. coli oligopeptidase B. One of
seven peptides sequenced from the puriWed wheat protein
was found to be encoded by the wheat expressed sequence
tag (EST) BU100257. This presented a likely candidate for
one of the three wheat endopeptidase homoeologues.

Tsuji et al. (2004) also identiWed a rice cDNA
(AK070316) that fully encoded three of seven peptides
sequenced from the putative wheat oligopeptidase B. The
identity between three other of the sequenced wheat pep-
tides and the predicted peptide sequence of AK070316
ranged from 80 to 94%. The wheat EST BU100257 and
rice cDNA AK070316 are 85% identical over their 741-nt
overlap. A search of the TIGR Rice Genome Annotation
Database and Resource (http://www.tigr.org/tdb/e2k1/osa1/
) identiWed a predicted coding region LOC_Os06g51410 as
the source of rice cDNA AK070316. LOC_Os06g51410 is
located in a region of rice chromosome 6 with homoeology
to the most terminal deletion bin of chromosome 7D
(7DL3) (Hossain et al. 2004; Fig. 2), a likely chromosome
bin location of Ep-D1 (Fig. 2). These observations sug-
gested that cDNA AK070316 might the product of the rice
Enp locus and that a wheat homologue of the rice cDNA
AK070316 (BU100257) may also be present in the 7DL3
wheat chromosome bin.

To determine if a wheat oligopeptidase B homologue
was associated with Pch1, we developed a PCR-based
marker and tested it on a panel of 22 lines known to carry
Pch1 and 22 lines known to be lacking this gene (Table 1).
For marker development, we identiWed a near full-length
wheat transcript (AB246917) in the NCBI database which
includes and extends the previously identiWed EST

Fig. 1 Frequency distributions of average eyespot disease scores for
recombinant inbred lines (RILs) from the Coda £ Brundage cross. a
Frequency distribution for the Wrst 94 Coda\Brundage RILs using a 0–
2 scoring scale. The average disease scores for Coda and Brundage
were 0.70 and 1.78, respectively. The least signiWcant diVerence (LSD)
for the disease score was 0.50. b Frequency distribution for an addi-
tional 160 RILs using the 0–4 scoring scale. The average disease scores
for Coda and Brundage were 0.1 and 2.7, respectively. The least sig-
niWcant diVerence (LSD) for disease score was 0.62
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Table 3 Characteristics of genetically deWned endopeptidases from wheat, maize, and rice (Ep-D1, enp1, Enp, respectively) compared to puriWed
oligopeptidase B proteins from E. coli and wheat

a Based on Hart and Langston (1977) and Koebner et al. (1988)
b Based on Vodkin and Scandalios (1980), Cardy et al. (1982), Doi et al. (1986), and Edwards et al. (1992)
c Based on de Kochko (1987) and Pham et al. (1989)
d Based on Tsuru and Yoshimoto (1994) and MEROPS the Peptidase Database (http://merops.sanger.ac.uk)
e Based on Tsuji et al. (2004) and the present study
f BANA, Bz-Arg-NHNap; BAPNA, Bz-Arg-NHPhNO2; Z, benzoyl; Bz, carbobenzoxy; Mec, 4-methylcoumaryl 7-amide
g TLCK, N-tosyl-L-lysine chloromethyl ketone; DFP, diisopropyl Xuorophosphate
h ND, Not determined
i N/A, Not applicable

Genetic locus or gene Chromosomal location Enzyme substratef Inhibitorsg

Ep-D1a (wheat) Long arm of 7D BANA NDh

enp1b (maize) Short arm of 6 BANA
BAPNA

TLCK, leupeptin, antipain, 
p-mercuribenzoate

Enpc (rice) Short arm of 6 BANA NDh

E. coli oligopeptidase Bd N/Ai BAPNA
Bz-Arg-NHMec

TLCK, leupeptin, antipain DFP 

Wheat oligopeptidase Be Long arm of 7D Z-Arg-NHMec TLCK, leupeptine, antipain, 
DFP, benzamidine

Fig. 2 Deletion bin location of 
markers on the long arm of chro-
mosome 7D and bin-mapped 
wheat expressed sequence tags 
(ESTs) that have homologues on 
the terminus of rice chromosome 
6. Left, genetic map of the long 
arm of chromosome 7D (Gale 
et al. 1995). Center, ideogram of 
chromosome 7D showing seven 
deletion-deWned chromosome 
bins (Hossain et al. 2004). Dele-
tion bin 7DL3 (0.82–1.0) is 
shown in grey. Right, bin-
mapped wheat expressed se-
quence tags (ESTs) that have 
homologues on the terminus of 
rice chromosome 6. Lines con-
nect markers and ESTs that have 
been mapped to the 7DL3 dele-
tion bin of chromosome 7D 
(Hossain et al. 2004; Boyco 
et al. 2002). BAC tiling path of a 
terminal segment of rice chro-
mosome 6 is indicated by bars 
and the location of oligopepti-
dase B-encoding transcript 
AK070316 is indicated by an ar-
row. Numbers on the wheat ge-
netic map represent cM while 
numbers on rice chromosome 6 
indicate megabasepairs
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BU100257, and aligned it with genomic sequence of the
putative rice oligopeptidase B LOC_Os06g51410 using the
computer program Spidey (NCBI Database) to predict
intron/exon boundaries for intron-scanning PCR. This anal-
ysis showed a number of small, closely spaced predicted
introns near the carboxy terminus. The orw1F/orw1R
primer pair (Table 2), designed to be complementary to the
putative wheat oligopeptidase B transcript that spanned
predicted intron 9, revealed an informative polymorphism.
PCR reactions with the orw1 primer pair produced 167-
and/or 178-bp fragments among both eyespot-resistant and
-sensitive lines. But all Pch1-carrying lines, including the
donor line VPM-1, produced a 180-bp fragment while none
of the eyespot-sensitive lines yielded this product. This
panel of wheat genotypes was also tested with the Pch1-
associated marker XustSSR2001-7DL. Similar to the report
by Santra et al. (2006), we found that the PCR reactions uti-
lizing DNA from eyespot-resistant lines produced the
Pch1-associated 237-bp product whereas DNA from the
eyespot-resistant variety Coda yielded a 222-bp fragment
associated with the absence of Pch1 (Groenewald et al.
2003). This suggested that the putative oligopeptidase B
locus templating the 180-bp fragment was more tightly
associated with Pch1 than XustSSR2001-7DL.

Mapping the Pch1 region

We used microsatellite markers, the Pch1-associated
marker XustSSR2001-7DL, and the orw1 primers to deWne a
genetic locus (Xorw1) using 254 Coda/Brundage-derived
RILs. Xorw1 mapped to the distal end of wheat chromo-
some 7DL (Fig. 3a). The endopeptidase isozyme assay
(Santra et al. 2006) was used on the mapping population to
genetically locate Ep-D1. The population was also screened
for disease reaction against O. yallundae to map Pch1. We
detected no recombination between Xorw1, Ep-D1 and
Pch1.

Additional EST-derived markers for the Pch1 region
were designed from predicted gene sequences located on
the BAC clone OSJNBa0069C14 (AP005750) encoding the
putative rice oligopeptidase B. BLASTn searches of The
Gene Index Project (presently housed at the Dana-Farber
Cancer Institute) were used to identify homologous wheat
putative EST contigs. The sequences returned were then
used for an intron-scanning screen for polymorphic PCR
products, tested on the association panel, and subsequently
mapped. This exercise yielded two additional mapped loci.
Xorw5 derives from a putative rice callose synthase
(LOC_Os06g51270). Orw5 primer pairs produced a 170-bp
amplicon in all 44 members of the association panel but a
156-bp fragment only in lines that lacked Pch1. Xorw6
derives from rice transcript assembly TA3304_4530, a
putative photosystem II assembly factor HCF136. The

orw6 primers detected two apparent loci not associated
with Pch1 in the panel. One locus produced either a null
allele or a 158-bp product while the second locus yielded
products of 191, 194 bp, or a null allele. A third locus, how-
ever, produced a unique 166-bp product only in Pch1 carry-
ing lines but no similarly sized product in lines lacking
Pch1. When tested on the Coda/Brundage mapping popula-
tion, Xorw5 and Xorw6 were also completely linked to
Pch1 together with a group of three microsatellite loci
Xcfd175, Xbarc97, and Xwmc14 (Fig. 3a).

As the three rice gene models corresponding to Xorw1,
Xorw5, and Xorw6 span less than 112 kbp on rice
chromosome 6, we considered that tight linkage might reX-
ect close physical position in wheat. Alternatively, reduced
recombination between the introduced Ae. ventricosa 7DVL
fragment and common wheat 7DL might be the source of
lack of segregation of these loci. To test this, we mapped
markers using 94 RILs of the ITMI mapping population.
The three EST-derived markers, Xorw1, Xorw5, and Xorw6
were not polymorphic and could not be mapped. However,
seven common microsatellite markers were mapped
(Fig. 3b). Four identically ordered loci proximal to Pch1
showed comparable genetic distances in both maps. The
three loci completely linked to Pch1 on the Coda/Brundage
map, Xwmc14, Xbarc97, and Xcfd175, were each approxi-
mately 2 cM distant on the ITMI map.

Fig. 3 Genetic maps of the 7DL terminus. a Map based on 254 RILs
derived from the cross between eyespot-resistant Coda and eyespot-
sensitive Brundage. b Map based on 94 RILs from the ITMI
W7984 £ Opata85 RIL population. Numbers represent distances in
cM
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We looked for evidence of recombination in lines carry-
ing Ae. ventricosa segments by analyzing 22 lines carrying
Pch1 with 11 markers (Fig. 4). All accessions carrying
Pch1 were identical to VPM-1 at Xorw1, Xorw5, and
Xorw6. Eleven of the 22 lines were identical to VPM-1
(carrying only Ae. ventricosa-derived alleles) at all 11 loci.
Two accessions, Temple and Coda, carried alternate alleles
at loci proximal to the three linked STS loci. Eight lines
showed alternate alleles at some or all of the three distal
SSR markers Xwmc14, Xbarc97, and Xcfd175 indicating
historical recombinations in the regions Xanking Pch1. In
the panel of 44 lines we analyzed, Xorw1, Xorw5, and
Xorw6 were 100% accurate in predicting the presence or
absence of Pch1 whereas the accuracy of prediction for
markers Xgwm37, Xbarc76, XustSSR2001-7DL, Xwmc14,
Xbarc97, and Xcfd175 was 95, 95, 98, 98, 93, and 77%,
respectively.

Discussion 

In this study, we sought to identify a candidate gene for the
endopeptidase locus Ep-D1 that could be used to develop a
DNA-based marker to track the economically important
eyespot-resistance gene Pch1 in breeding programs. The
biochemical isolation and characterization of a wheat oligo-
peptidase B enzyme and observations concerning homoeol-
ogy between rice and maize chromosome 6 and the terminus
of wheat 7DL were key to identifying wheat ESTs that
could be used as the basis for PCR marker development.

The complete association observed between the unique
PCR products ampliWed from 22 wheat cultivars carrying

Pch1 with primers designed to wheat oligopeptidase B-
encoding wheat EST BU100257 strengthened the connec-
tion between the isozyme marker (Ep-D1) and the putative
oligopeptidase B transcript. Complete linkage observed
between Pch1 and the STS marker Xorw1 in our genetic
map constructed with a population of 254 RILs, lead us to
propose that they represent the same locus. However, the
lack of recombination in this region in our study leaves
open the possibility that Xorw1 represents a diVerent, albeit
tightly linked, locus.

A goal of this study was to derive DNA-based markers
more closely linked to Pch1 than XustSSR2001-7DL for
marker assisted selection (MAS). A recombination fre-
quency between XustSSR2001-7DL and Ep-D1 of 2% in a
population of 98 plants was reported by the developers of
the marker (Groenewald et al. 2003). Similarly, we mapped
a distance of 3.9 cM between the same loci in our larger
population. We also identiWed one cultivar, Coda, of the 22
Pch1 carrying cultivars that does not carry the 237-bp Ae.
ventricosa-derived XustSSR2001-7DL allele, conWrming
the need for a more tightly linked marker. The three EST-
derived markers, Xorw1, Xorw5, and Xorw6 reported here
are all completely linked to Pch1 in the genetic map
(Fig. 3a) and reveal unique alleles in all 22 of the Pch1-car-
rying cultivars not found in the 22 eyespot-susceptible lines
we assayed. All of the STS markers that we have developed
are dominant, but the 156-bp Triticum-derived allele of
Xorw5 could be paired with the unique Aegilops-derived
alleles of Xorw1 or Xorw6 to assess zygosity in segregating
lines. The 180-bp Xorw1 allele can easily be distinguished
from a ubiquitous 178-bp product by fragment analysis in a
capillary electrophoresis system, and the 166-bp Xorw6

Fig. 4 Haplotypes of eyespot-resistant lines that diVer from VPM-1 in
the region between Xbarc53 and Xcfd175. Ae indicates an allele from
VPM-1 (originally derived from Ae. ventricosa) and T indicates an al-
lele from T. aestivum. Markers are arranged in map order except for

Xorw5, Xorw1 and Xor6, which are completely linked. Their order is
suggested by the orientation of homologues on rice chromosome 6. An
additional 11 eyespot-resistant lines were identical to VPM-1 for all
loci in this region and are not included in this Wgure
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allele can be resolved from an unlinked 156-bp product
making them useful markers for introgression of Pch1 in a
breeding program.

Attempts to develop a more densely populated genetic
map of the Pch1 region were frustrated by the complete
linkage between Xorw1, Xorw5, and Xorw6, as well as
three microsatellite markers (Xwmc14, Xbarc97, and
Xcfd175). Recombination observed between the Xwmc14,
Xbarc97, and Xcfd175 in the smaller ITMI population sug-
gest that recombination is locally inhibited in the Coda/
Brundage population. Comparison of maps (Fig. 3) sug-
gests that this region lies distal to XustSSR2001-7DL. How-
ever, historical recombinations involving Xwmc14 and the
two distal markers Xbarc97 and Xcfd175 (Fig. 4), imply
that recombination is not eliminated in the 7DL terminus,
but perhaps only reduced. Although the hexaploid wheat
7DL and the Ae. ventricosa 7DVL chromosome segments
carry homologous loci for the markers we used, it is possi-
ble there are some structural diVerences that locally inhibit
recombination. Determining the extent of this inhibition
will require further genetic analyses in other populations. If
this is a general phenomenon, it seriously impacts the feasi-
bility of cloning Pch1 through a map-based approach.

It was proposed that similar positions of Pch1 and Pch2
on 7DL and 7AL, respectively, suggest they are homoeo-
logues (de la Peña and Murray 1994). However, the
32.8 cM distance between Pch2 and the Ep-D1 homoeo-
logue Ep-A1 (de la Peña et al. 1997), contrasts sharply with
the tight linkage observed between Pch1 and Ep-D1. The
physical distance between Pch1 and Ep-D1 may not be as
be tight as implied by the genetic map because of the lack
of recombination we observed in this region. Yet, the
4.1 cM distance calculated between XustSSR2001-7DL and
Xcfd175 on the Coda/Brundage map is only 2.8 cM shorter
than that measured between the same markers on the ITMI
map. Therefore, we also report a large discrepancy between
the genetic distances of the endopeptidase loci, Ep-D1 and
Ep-A1, and the Pch loci on their respective chromosomes
and oVer no evidence to support their homoeology based
upon their genetic positions.

The three rice genes used to develop markers in this report
span 112 kbp in the rice genome. The complete linkage
observed in both our genetic map and association panel sug-
gest they might be similarly located in wheat. Ordering and
sequencing of BACs hybridized, in turn, with these three
EST-based markers might be used to establish their relative
positions in the wheat genome. This would also allow a
determination of microcolinearity between the wheat and rice
genome in this region. Although it is interesting to speculate
that the Pch1-derived disease resistance might actually be the
product of Ep-D1b (Worland et al. 1988), our work cannot
suggest any candidates for Pch1 until a population segregating
in this region can be established.
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